

<iframe>able finance:
designing and building embedded UIs

<iframe>able finance:
designing and building embedded UIs

<iframe>able finance:
designing and building embedded UIs

Adam Solove
Product @ Rainforest

<iframe>d
payments

 Bob’s Stamps

 Mail a check1995

2005

 Bob’s Stamps Stripe2015

 Bob’s Stamps

 Paypal

<iframe>d
insurance

 Delta

 Find Insurer2000

2010

 Delta Insurer2020

 Delta

 Insurer

<iframe>d
credit

 Delta

 Local bank2000

2010

 Delta Affirm2020

 Delta

 Financing

Great embedded UIs
make great distribution
make winners and losers

Contents

What? Why? Product design Developer
experience

Engineering

Product design

Stakeholders & constraints

Mindset

Holistic thinking

Communicating

Product mindset for embedded UIs

Product design

Get ready for more

● collaboration

● stakeholders and constraints

● obscure technical limitations

● security and compliance concerns

More stakeholders, more constraints

Product design

Normal constraints

● Good business

● Usable for customers

● Fast, Reliable

● Secure

● Compliant, Legal

Extra constraints

● Good for partner’s business

● Partner PMs’ and designers’ opinions

● Partner’s engineers and existing systems

● Partner’s security and compliance team

● Checking partner’s compliance

Different product mindsets

Product design

Guess a direction
and move fast

Experiment by
following data

Navigate through
a minefield

x
x x

x

x

✓

Think holistically

Product design

 UI design

 Internal systems

 Partner SDK

 Partner API

 Vendor

 Contract

Hold the vision

● Made tradeoffs across levels

● Track down the implications

● Explain what can’t change

Write it down

Product design

Share the vision

● A working document, not a spec

● Thinking happens in and with the doc

● Zoom to different levels of detail

● Sharable across teams

🛹 [Product brief] Merchant onboarding component

Owner: @jr

Updated: 2023-08-09

Status: Executing M1 [Linear], M2 in review [next: @julia]

Users say:

"N"ext, you will render the onboarding component as part of your application, providing the

We plan to build

Next, you will render the onboarding component as part of your application, providing the

Goals and constraints

Customer UI:

Next, you will render the onboarding componen

Partner styling:

Next, you will render the onboarding componen

Vendor compliance review:

Next, you will render the onboarding render the onboarding render the onboarding component

Developer experience

Control flow

API design

Styling

Quality review

Control flow is the hard part

Developer experience

 Card number

 MM / DD

 Zip

 CVV

Pay $100

 Card number

 MM / DD

 Zip

 CVV

Pay $100

Control flow is the hard part

Developer experience

 Card number

 MM / DD

 Zip

 CVV

Pay $100

 Card number

 MM / DD

 Zip

 CVV

Pay $100

Control flow

 Server

 API

 Page

 SDK

 You

 Partner

 Backend

 Frontend

Developer experience

Four-square diagram

Flow one

Developer experience

 Card number

 MM / DD

 Zip

 CVV

Pay $100

 Server

 API

 Page

 SDK

 You

 Partner

 Backend

 Frontend

Flow two

Developer experience

 Card number

 MM / DD

 Zip

 CVV

Pay $100

 Server

 API

 Page

 SDK

 You

 Partner

 Backend

 Frontend

Control flow tradeoffs

Developer experience

 Card number

 MM / DD

 Zip

 CVV

Pay $100

 Routing number

 Account number

Pay $100

Frontend APIs

Developer experience

Make it easy and universal

Frontend APIs

Developer experience

Make it easy and universal

Your partners:

● Hate and fear <iframe>s

// Don’t make partners think about iframe
s!

// Unstructured attributes, calls, and ev
ents

<iframe src=“https://you.com/widget?color
=blue"/>

iframe.postMessage({type: “submit”}, “you
.com”);

window.addEventListener(“message", (event
) => {

 // Partners handles arbitrary events t
hemselves!

if(event.type === “focus”){ … }

})

https://url/?type=payment&color=red
https://url/?type=payment&color=red
https://url/?type=payment&color=red
https://url/?type=payment&color=red
https://url/?type=payment&color=red

Frontend APIs

Developer experience

Make it easy and universal

Your partners’ developers:

● Hate and fear <iframe>s

● Want types, auto-complete, lint,

or any other help to use your API

// Don’t make partners think about iframe
s!

// Unstructured attributes, calls, and ev
ents

<iframe src=“https://you.com/widget?color
=blue"/>

iframe.postMessage({type: “submit”}, “you
.com”);

window.addEventListener(“message", (event
) => {

 // Partners handles arbitrary events t
hemselves!

if(event.type === “focus”){ … }

})

// Wrap in component to give structured

// attributes, methods, return values, ev
ents

<payment-component color=“blue”/>

component.submit().then((data: SubmitResp
onse) => /* … */)

 component.addEventListener(“focus”, (e
vent) =>

// Or wrap in an imperative API

var component = You.paymentComponent({col
or: ‘blue’});

component.submit().then((data: SubmitResp
onse) => /* … */)

component.on(“focus”, (data) => {

https://url/?type=payment&color=red
https://url/?type=payment&color=red
https://url/?type=payment&color=red
https://url/?type=payment&color=red
https://url/?type=payment&color=red

Frontend APIs

Developer experience

Make it easy and universal

Your partners’ developers:

● Hate and fear <iframe>s

● Want types, auto-complete, lint,

or any other help to use your API

● Use a different framework, language,

design system, and build tool

// Don’t make partners think about iframe
s!

// Unstructured attributes, calls, and ev
ents

<iframe src=“https://you.com/widget?color
=blue"/>

iframe.postMessage({type: “submit”}, “you
.com”);

window.addEventListener(“message", (event
) => {

 // Partners handles arbitrary events t
hemselves!

if(event.type === “focus”){ … }

})

// Wrap in component to give structured

// attributes, methods, return values, ev
ents

<payment-component color=“blue”/>

component.submit().then((data: SubmitResp
onse) => /* … */)

 component.addEventListener(“focus”, (e
vent) =>

// Or wrap in an imperative API

var component = You.paymentComponent({col
or: ‘blue’});

component.submit().then((data: SubmitResp
onse) => /* … */)

component.on(“focus”, (data) => {

https://url/?type=payment&color=red
https://url/?type=payment&color=red
https://url/?type=payment&color=red
https://url/?type=payment&color=red
https://url/?type=payment&color=red

Styling APIs

Developer experience

Work backwards from your goal

● Take pages from your prospective and

aspirational partners

● Design how your embedded UI would best

fit into their page

● Then built in the style options

 Dr. Jennifer Rosen

 Card number

 MM / DD

 Zip

 CVV

Buy now

Draft docs

Developer experience

Will it make sense to a partner?

Write a draft integration guide for the

simplest complete use-case:

● Explain the feature

● List the setup requirements, API calls,

events, and webhooks.

● Show screenshots or sample results

● Explain how to test in development

Onboarding merchants with embedded component

Before you can start processing payments, you first need to onboard your merchants. You and your merchants will provide

1. Create the merchant

First, call Create Merchant, providing as much information as you already have about the business.

POST /v1/merchants

{
name: “Your new merchant”

}

2. Embed the merchant onboarding component

Next, you will render the onboarding component as part of your application, providing the

<rainforest-merchant-onboarding

 session-key=“{{session_key}}“

 merchant-id=“{{merchant_id}}“

></rainforest-merchant-onboarding>

Then listen to find out when the component is submitted:

var component = document.querySelector(“r

ainforest-merchant-onboarding”);

component.addEventListener('submitted', f
unction (data) {

 // handle submit and show the merchant
the next step

 console.log(“you probably can’t see th
is”);

Friction logs

Developer experience

Experience your product as an outsider

● What? Try it as if an external user

● Who? You, your company, real users

● When? Before, during, and after

Do something unusual: use a different
language, programming environment,
browser, business model, etc.

Engineering

<iframe> limits

<iframe> communication

Security

<iframe> limits

Engineering

Don’t assume it will “just work”

 Dr. Jennifer Rosen

 Card number

 MM / DD

 Zip

 CVV

Buy now

<iframe> limits

Engineering

Don’t assume it will “just work”

● Focus and blur

● Autocomplete

● User activation

 Dr. Jennifer Rosen

 Card number

 MM / DD

 Zip

 CVV

Buy now

<iframe> limits

Engineering

Don’t assume it will “just work”

● Focus and blur

● Autocomplete

● User activation

Develop and test realistically

● In an iframe, on https, from another origin

● Using a realistic sample integration

 Dr. Jennifer Rosen

 Card number

 MM / DD

 Zip

 CVV

Buy now

<iframe>
communication

Engineering

Wrap postMessage() to make it better

// Don’t litter postMessage and listener

// calls throughout your code.

iframe.postMessage({

type: “check-valid”,

id: 1,
options

}, “you.com”)

window.addEventListener(“message", (event
) => {

/* check it’s safe */

if (event.origin !== “you.com” && event.s
ource){

return;
}
/* check it’s for us */

if (event.replyTo === 1){

/* handle reply to this call… */

}
})

<iframe>
communication

Engineering

Wrap postMessage() to make it better

● Add type or validity checking to both sides

● Add safety checks in one place

● Create a request-response Promise flow

● Debug-level logging for payloads

// Build a nicer abstraction

child
.checkValid(options as CheckValidRequest)

.then((data: CheckValidResponse) => {

/* handle response */

})

<iframe>
security

Engineering

<iframe>s aren’t enough

<iframe>
security

Engineering

<iframe>s aren’t enough

● Check message provenance

<iframe>
security

Engineering

<iframe>s aren’t enough

● Check message provenance

● Use Content Security Policy

Content-Security-Policy:

default-src ‘self’;

img-src static.you.com;

style-src static.you.com;

script-src js.you.com;

connect-src api.you.com;

report-to https://ops.you.com/collector

<iframe>
security

Engineering
@font-face {
 font-family: ‘Attack Font';

 src: url('0.woff') format(‘woff');

 unicode-range: U+30; /* “0” */

}
@font-face {
 font-family: ‘Attack Font';

 src: url(‘1.woff') format(‘woff');

 unicode-range: U+31; /* “1” */

}
@font-face {
 font-family: ‘Attack Font';

 src: url(‘2.woff') format(‘woff');

 unicode-range: U+32; /* “2” */

}
@font-face {
 font-family: ‘Attack Font';

 src: url(‘3.woff') format(‘woff');

 unicode-range: U+33; /* “3” */

}
@font-face {
 font-family: ‘Attack Font';

 src: url('0.woff') format(‘woff');

<iframe>s aren’t enough

● Check message provenance

● Use Content Security Policy

● Watch for hidden side-effects

Raise our
ambitions

Embedded UIs can be
easy, beautiful, and profitable.

Find me at the conference. Or talk later:

●adam.solove@rainforestpay.com

● linkedin.com/in/asolove

●adamsolove.com

<iframe> friends,
let’s talk!

http://adamsolove.com

Adam Solove, Product @ Rainforest

<iframe>able finance:
designing and building embeddable UIs

